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Abstract. We consider optimization problems that arise when estimating a set of

unknown parameters from experimental data, particularly in the context of nuclear

density functional theory. We examine the cost of not having derivatives of these

functionals with respect to the parameters. We show that the POUNDERS code

for local derivative-free optimization obtains consistent solutions on a variety of

computationally expensive energy density functional calibration problems. We also
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1. Introduction

Much of the intellectual capital in nuclear physics is invested in forward problems

whereby a theory or model is posited, assumptions are added (to improve accuracy)

and relaxed (to improve universality), and hypotheses are tested. An example can be

seen with the ab initio approach to nuclear structure. Here, the form of the Hamiltonian

is derived from chiral effective field theory [1]. One of the basic assumptions is that the

nuclear many-body problem can be solved non-relativistically with nucleons as basic

degrees of freedom [2]. The truncation in chiral perturbation and the inclusion or neglect

of three- and N -body forces are some of the hypotheses that can be tested by comparing

model predictions with experimental data [3]. Today, work on forward problems

invariably extends along a computational axis as well: models are made computationally

tractable and numerically implemented, and computational performance and efficiency

are improved.

Equally important is the inverse problem: given data (experimental or otherwise)

and a forward model, free parameters for the model are determined based on the

data. This aspect is especially important in the context of the nuclear shell model

or nuclear density functional theory (DFT). Indeed, these approaches to the nuclear

many-body problem are a notch more phenomenological than ab initio theory: they

rely on an effective interaction, or alternatively an effective energy density, that is not

predetermined from some underlying theory [4, 5]. Obtaining a robust and reliable

estimate of the free parameters is essential since nuclear DFT is widely used in a number

of applications, from large-scale surveys of nuclear properties [6] to fission [7], and will

play a critical role in the physics explored at the future Facility for Radioactive Ion

Beams [8]. In this paper we focus on numerical optimization, one aspect of inverse

problems that often presents a bottleneck when working with computationally expensive

forward models.

Formally, we assume a collection of nd components of scalar data d = (d1, . . . , dnd
)

based on which we must determine values of nx real parameters x = (x1, . . . , xnx
). It

is often convenient to think of a model m as generating the observable di based on the

set of real parameters x and a set of hyperparameter values, ν i ∈ R
p, which represent

known values needed to compute the forward problem (such as the number of protons

and the number of neutrons). Thus the inverse problem is to determine the value(s) x∗

such that

m (x∗;νi) ≈ di i = 1, . . . , nd. (1)

The level of agreement dictated by “≈” can depend on the uncertainties in the model

m, the parameters x∗, and/or the data d.

Parameter estimation typically depends on the distribution of the errors between

reality and the data. Given an assumed distribution of these errors, a common approach

in both Bayesian and frequentist parameter estimation is to determine the maximum

likelihood estimate (or maximum a posteriori estimate for Bayesians) for the parameters,
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namely, those values that, given the values of the data, are most likely under the assumed

distribution(s).

Regardless of the distribution or whether the errors are independent of one another,

one generally arrives at an optimization problem. For example, if the model m is

correct, the errors are independent, and the errors are Gaussian with mean zero and

known variance w2
i > 0, then maximizing the log-likelihood (and hence the likelihood)

is equivalent to solving

min
x∈Rnx

nd
∑

i=1

(

m (x;ν i)− di
wi

)2

. (2)

If the errors are correlated, then (2) becomes

min
x∈Rnx

nd
∑

i=1

nd
∑

j=1

wij (m (x;ν i)− di) (m (x;νj)− dj) , (3)

where wij captures the (inverse) covariance between the errors of observables i and j.

The objective in (2) differs from χ2 objectives by a constant factor (related to

the degrees of freedom, nd − nx), and hence the solution of (2) with an appropriate

w (see [9]) arises throughout computational science. Similar objective functions to be

optimized can be derived for a wide variety of other distributions, including cases where

the variances {w2
i : i = 1, . . . , nd} are unknown or specified only by a diffuse prior.

These latter cases are especially relevant to nuclear DFT, since there is little a priori

information about the errors on computed observables. Likewise, if constraints on the

parameters are imposed (e.g., to break symmetries or satisfy physical realities), the

optimization problem can be modified to consider the restriction x ∈ Ω ⊂ R
nx .

As we will see, the derivatives ∂
∂xj

m (x;νi) play a crucial role in identifying

solutions to such optimization problems. The solution of these problems is especially

difficult when such derivatives are not made available to the optimization solver; such

“derivative-free” situations are pervasive when evaluatingm(·; ·) entails running a legacy

computer simulation. In Section 2 we review methods for solving problems of the form

(2) in both the unconstrained and bound-constrained case. We focus on derivative-

free approaches for calibrating energy density functionals and review the POUNDERS

method for solving such problems. In Section 3, we examine some of the optimization

problems from the UNEDF0, UNEDF1, and UNEDF2 parameterizations [10, 11, 12].

We show that despite the potentially multimodal nature of the objective function

considered, the solutions obtained by POUNDERS are surprisingly robust to the choice

of starting point. Our results also offer a further empirical validation of the sensitivity

analysis conducted in the UNEDF studies. Section 4 returns to the matter of derivatives.

Through a specific example involving nuclear masses, we show that the availability of

derivatives with respect to even a few parameters can improve the efficiency of the

optimization. In Section 5 we provide details on the usage of the POUNDERS method

as well as general tips for solving such problems.
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Figure 1. Example of the one-dimensional nonlinear least squares problem f(x) =
∑nd

i=1 Fi(x)
2 with nd = 3, Fi(x) = (x− νi)

2 − di, ν = (1, 1.1, 1.5), and d = (1− ν)2.

2. Optimization-Based Approaches for Parameter Estimation

We will restrict our focus to (2), the most common form of optimization problem

encountered in parameter estimation, but we note that much of our discussion applies for

more general objectives. In many practical applications, in particular the optimization

of energy densities in DFT, the model m is a nonlinear function of the parameters x;

hence the problem in (2) is that of nonlinear least squares (NLS),

min
x∈Ω

f(x) =

nd
∑

i=1

Fi(x)
2, (4)

where the vector mapping F : Rnx → R
nd captures the weighted residuals and Ω can

correspond either to all of Rnd (called the “unconstrained” case) or to some subset of

R
nd (e.g., when non-negativity, xi ≥ 0, is imposed for some parameter xi).

Solutions to (4) are referred to as global minimizers, and such points x̂ have

the property that f(x̂) ≤ f(x) for all x ∈ Ω. However, finding global solutions for

arbitrary functions F is generally intractable. Consequently, optimization methods that

promise global solutions are either making problem-specific assumptions (e.g., that F is

a linear function of x or that Ω contains a finite number of points), guaranteeing global

optimality only asymptotically (and thus never achieved in practice), or overstating

their claims.

As a result, we follow the approach of seeking local minimizers, which cannot be

improved upon locally: f(x̂) ≤ f(x) for all x ∈ Ω close to x̂. Figure 1 illustrates

that even simple, one-dimensional (nx = 1) NLS problems can have multiple local

minimizers, with potentially all but one of these being nonglobal minimizers. Hence,

one must apply local optimization methods to such problems with caution; Section 3

returns to this topic.
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2.1. Derivatives and Methods for Nonlinear Least Squares

When the residual vector F is differentiable, the gradient of f with respect to the

parameters x is ∇
x
f(x) = 2

∑nd

i=1 Fi(x)∇x
Fi(x) and plays a crucial role in local

optimality conditions. In the unconstrained case, a necessary condition for local

minimizers is that the gradient of the function disappear, ∇
x
f(x) = 0. In the

constrained case, things are slightly more complex. Here, we focused on one of the

simplest cases, when bound constraints

Ω = {x ∈ R
nx : li ≤ xi ≤ ui, i = 1, . . . , nx} (5)

are the only ones present. In the bound-constrained case, a necessary condition is that

x̂ ∈ Ω and that the components of the gradient satisfy

∂f(x̂)

∂xi











= 0 if li < x̂i < ui

≥ 0 if x̂i = li
≤ 0 if x̂i = ui

i = 1, . . . , nx.

We say that a bound (or parameter, in this case) is “active” if the parameter attains

the bound (e.g., x̂i = li or x̂i = ui).

In both the unconstrained and constrained cases, the derivatives ∇
x
f (and hence

∇
x
Fi) play a vital role in guaranteeing decrease of the objective f , accelerating

convergence, and recognizing a solution. In most practical problems, the residual Fi(x)

invariably depends on the output of a numerical or physical simulation, and hence such

derivatives may not readily be available.

When these residuals are defined by a computer code free of proprietary libraries

and control flow logic that may introduce discontinuities, algorithmic differentiation

(AD) [13] can be an invaluable technique. AD tools generate source code—often

automatically—by propagating the chain rule through the original code. Under infinite-

precision arithmetic, derivatives from AD are exact. Alternatively, one can apply

numerical differentiation (ND) to obtain approximate derivatives. With ND, however,

one must take great care in selecting an appropriate finite-difference stepsize on noisy

simulations [14]; also, the cost of obtaining a full gradient using ND is generally at least

n times the cost of a function evaluation, a potentially significant expense.

When derivatives are not available from the simulation or through AD, an

alternative to ND is to employ a derivative-free optimization method [15], that is, one

that relies only on evaluations of the function Fi (or the aggregate objective function, f).

Because they are provided less information about the objective, such methods generally

require a greater number of function evaluations than do derivative-based methods.

We illustrate this concept by examining a typical example of an unconstrained NLS

problem, chwirut1.c, which is included in the TAO distribution; see Section 5. This

problem is based on the chwirut1 dataset [16], with the extended version consisting of

nx = 6 parameters and nd = 428 observables:

min
x∈R6

f(x) =
214
∑

i=1

(

e−x1νi

x2 + x3νi
− di

)2

+
214
∑

i=1

(

e−x4νi

x5 + x6νi
− di

)2

, (6)
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Figure 2. Comparing the performance (log log scale) of three TAO solvers (limited-

memory variable metric, POUNDERS, Nelder Mead) on NLS test problems of the form

(6). The left plot is the original version with nx = 3 variables; the right plot is the

extended version with nx = 6 variables.

where {νi : i = 1, . . . , 214} are hyperparameters (metal distances) and {di : i =

1, . . . , 214} are experimental ultrasonic responses. The original version does not include

the second sum and thus has nx = 3 parameters and nd = 214 observables.

We solved both versions using several of the algorithms available in TAO; the results

are shown in Figure 2. The limited-memory variable metric (LMVM) algorithm is a

quasi-Newton method that utilizes first-derivative information, and Nelder-Mead is a

simplex-based derivative-free method; neither method takes into account the sum-of-

squares structure present in (4). POUNDERS is a derivative-free method that exploits

the availability of the residual vector F rather than just the single aggregate f ; we

refer the reader to [17] for a mathematical description of the algorithm. Figure 2 shows

that when measured in terms of the number of function evaluations, the derivative-

based method LMVM reduces the f value considerably faster than do the derivative-free

methods. If the combined expense of a function and gradient evaluation is roughly the

same as two function evaluations, the advantage of LMVM over POUNDERS persists.

However, if the combined cost is roughly the same as nx + 1 function evaluations

(as would happen if using LMVM with gradients approximated by ND and forward

differences), then POUNDERS is faster. In all these scenarios, the derivative-free method

that does not exploit the structure inherent in (4) performs significantly worse.

2.2. POUNDERS for Calibrating Energy Density Functionals

Under the UNEDF [18] and NUCLEI [19] collaborations, a wide variety of parameter

estimation problems arose where derivatives of the residuals were unavailable [10, 11,

12, 20, 21]. Here we focus on some of the results obtained when calibrating Skyrme
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Table 1. Results for unconstrained and bound-constrained derivative-free methods

starting from SLy4 on the UNEDF0 problem (nx = 12, nd = 108, nN = 72) [10].

UNEDFnb [10] UNEDF0 [10]

Method Nelder-Mead POUNDERS POUNDERS (bounds) σ

ρc 0.16155537 0.15104627 0.16052598 0.001

ENM/A -16.115363 -16.063211 -16.05589 0.055

KNM 234.64613 337.87808 230 –

aNM
sym 31.919478 32.454973 30.54294 3.058

LNM
sym 46.186671 70.218532 45.080413 40.037

1/M∗
s 1.4306113 0.95727984 0.9 –

Cρ∆ρ
0 -78.133526 -49.513502 -55.260592 1.697

Cρ∆ρ
1 4.4779896 33.52886 -55.622579 56.965

V n
0 -240.42409 -176.79601 -170.37424 2.105

V p
0 -252.81184 -203.25488 -199.20225 3.351

Cρ∇J
0 -92.272157 -78.456352 -79.530829 3.423

Cρ∇J
1 -27.615105 63.993115 45.63019 29.460

f(x̂) 106.23493 41.865965 67.309821

nf 300 268 300

energy density functionals where HFBTHO [22] was the underlying simulator. As

a reminder, HFBTHO solves the Hartree-Fock-Bogoliubov equations for generalized

Skyrme functionals under the assumption of axial and time-reversal symmetry. These

built-in symmetries make HFBTHO particularly adapted to large-scale surveys of

nuclear properties and optimization problems [6, 23].

Table 1 summarizes the solutions obtained during UNEDF0 computational

experiments [10]. Each of the three runs was started from the SLy4 parameterization

[24, 25] and, because of the computational expense of evaluating nd = 108 observables

across nN = 72 even-even nuclei, run for a maximum of 300 evaluations. The first two

columns represent the solutions from the Nelder-Mead and POUNDERS codes in TAO

when solving the unconstrained problem, whereas the “POUNDERS (bounds)” column

shows the POUNDERS results when bound constraints (see Table 2) are enforced for

the 6 parameters that correspond to nuclear matter properties, for which relatively

strict constraints exist. These bounds were added after it was noticed that the nuclear

incompressibility parameter in the unconstrained optimization had a large value that

was incompatible with experimental data.

As seen from the number of function evaluations, nf , performed, only the

unconstrained POUNDERS terminated short of the budget (because of a measure of

criticality, similar to ‖∇f(x̂)‖ ≤ ǫ, being satisfied); however, the bound-constrained

POUNDERS was also seeing negligible decreases at the time the budget was exhausted.

Since the bound-constrained problem involves a smaller parameter space, the associated

global minimum will necessarily have a larger function value; this is borne out in the best

functions values, f(x̂), obtained by POUNDERS on these two problems. In contrast, as

with the test function in Figure 2, the Nelder-Mead performance is markedly worse. At

the time of the UNEDF0 runs, each evaluation of f required 12 minutes of wall time on
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Table 2. UNEDF bound constraints and scaling intervals.
UNEDF0 [10] UNEDF1 [11] Scaling Bounds

UNEDF2 [12]

l u l u sl su

ρc 0.15 0.17 0.15 0.17 0.14 0.18

ENM/A -16.2 -15.8 -16.2 -15.8 -17 -15

KNM 190 230 220 260 170 270

aNM
sym 28 36 28 36 27 37

LNM
sym 40 100 40 100 30 70

1/M∗
s 0.9 1.5 0.9 1.5 0.8 2.0

Cρ∆ρ
0 −∞ ∞ −∞ ∞ -100 -40

Cρ∆ρ
1 −∞ ∞ −∞ ∞ -100 100

V n
0 −∞ ∞ −∞ ∞ -350 -150

V p
0 −∞ ∞ −∞ ∞ -350 -150

Cρ∇J
0 −∞ ∞ −∞ ∞ -120 -50

Cρ∇J
1 −∞ ∞ −∞ ∞ -100 50

72 cores; thus each 300-evaluation run required 2.5 days.

For the bound-constrained problem, two of the nx = 12 parameters (KNM and

1/M∗
s ) were active and hence restricted by the enforced bounds. Parameter values that

are active are underlined in each of the tables in this paper. We note that for subsequent

studies, the bound on KNM was relaxed based on this analysis; see Table 2. The final

column in Table 1 shows the standard deviations σ computed for each optimal parameter

value; see [10] for details of the computation of σ.

For UNEDF1, the number of nuclei and number of observables were increased, with

the resulting solution shown in the last column of Table 3. A similar run (the UNEDF1ex

column) was performed with an additional parameter 0 ≤ αex ≤ 1 multiplying the

exchange Coulomb part of the functional. This parameter was added with the intent

of simulating many-body correlation effects for the Coulomb term, and early work

suggested it could significantly improve reproduction of masses [26]. The parameter

αex was treated as a free parameter (with bound constraints corresponding to [0, 1]).

Adding an additional parameter without increasing the amount of data should result in

an objective value no worse than when that parameter is held fixed. Although this result

cannot be guaranteed in practice when doing local optimization from arbitrary starting

points, Table 3 shows that this was indeed the case for POUNDERS runs starting from

UNEDF0. However, the improvement of the fit was deemed too marginal to justify

introducing an empirical parameter. We note that moving from UNEDF0 to UNEDF1,

the active parameters changed; see the discussion in [11].

3. Consistency of Local Solutions

As discussed in Section 2, using local optimization methods has the benefit of

substantially reducing the number of expensive simulations performed, when compared

with global optimization methods. This benefit, however, must be weighed against risks
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Table 3. UNEDF1 (nd = 115, nN = 79) results obtained by POUNDERS starting from

the UNEDF0 parameterization. αex was fixed at its nominal value of 1.0 for UNEDF0

and UNEDF1 and treated as a free parameter (restricted to [0, 1]) in UNEDF1ex.

UNEDF1ex [11] UNEDF1 [11] σ

ρc 0.15836673 0.15870677 0.00042

ENM/A -15.8 -15.8 –

KNM 220 220 –

aNM
sym 28.383952 28.986789 0.604

LNM
sym 40 40.00479 13.136

1/M∗
s 1.0018717 0.99242333 0.123

Cρ∆ρ
0 -44.601636 -45.135131 5.361

Cρ∆ρ
1 -180.95647 -145.38217 52.169

V n
0 -187.46859 -186.0654 18.516

V p
0 -207.20942 -206.57959 13.049

Cρ∇J
0 -74.339131 -74.026333 5.048

Cρ∇J
1 -38.837179 -35.658261 23.147

αex 0.8135508 1.0 –

f(x̂) 49.341359 51.058424

nx 13 12

nf 253 218

associated with being dependent on the initial point from which a local run is started.

We now revisit some of the runs in the previous section and test the robustness of

POUNDERS under changes to the starting point, the simulation code, and the data.

In each case, we find that POUNDERS obtains consistent (relative to the original

reported uncertainties) solutions. Possible explanations of this (beyond being sufficiently

“lucky”) include the following

• POUNDERS is relatively robust and tends to avoid getting stuck in poor local

minimizers.

• The starting points are in reasonable parts of the parameter space and are thus

conducive to yielding the same local minimizer/basin of attraction for POUNDERS.

• The data d and model m result in an objective function that is not very multimodal

in this part of the parameter space.

We hypothesize that the likely reason is some combination of the above, but these results

provide some confidence in the use of POUNDERS for this class of problems

3.1. UNEDF0, revisited

The HFBTHO code has undergone several changes since the version used for the

UNEDF0 optimization in [10]. In particular, different initialization schemes of the

HFB problem have been implemented, the numerical accuracy of the direct Coulomb

potential has been improved, and a small bug on the rearrangement term for the pairing

field has been fixed; see [22]. These changes result in minimal differences (often at the

level of only a few keV on binding energies) to most observables used in the UNEDF0
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Table 4. Rerun of POUNDERS on the UNEDF0 problem (nd = 108, nN = 72) using

HFBTHO code (Ver 201) from two different starting points. The scaled difference

columns represent the difference between the final value found and the original

UNEDF0 parameterization, scaled by the uncertainties σi in Table 1.

Starting from SLy4 Scaled Diff. Starting from SKM* Scaled Diff.

initial final initial final

ρc 0.159539 0.160486 -0.03954 0.160319 0.160435 -0.09106

ENM/A -15.9721 -16.0685 -0.2285 -16 -16.073 -0.3119

KNM 229.901 230 – 216.658 230 –

aNM
sym 32.0043 31.3393 0.2604 30.0324 31.7221 0.3856

LNM
sym 45.9618 54.2493 0.2290 45.7704 60.4725 0.3844

1/,M∗
s 1.43955 0.9 – 1.26826 0.9 –

Cρ∆ρ
0 -76.9962 -55.2344 0.01545 -68.2031 -55.7348 -0.2794

Cρ∆ρ
1 15.6571 -64.1619 -0.1499 17.1094 -70.4274 -0.2599

V n
0 -285.84 -170.796 -0.2003 -280 -170.788 -0.1966

V p
0 -285.84 -197.782 0.4238 -280 -198.038 0.3474

Cρ∇J
0 -92.25 -77.9436 0.4637 -97.5 -79.2915 0.06990

Cρ∇J
1 -30.75 27.4519 -0.6171 -32.5 49.5737 0.1339

f(x̂) 1188.75 67.9034 24814.1 67.5738

nf 235 150

calibration problem. Overall, the function value obtained at UNEDF0 is roughly 67.985

for the latest version (Ver 201) of HFBTHO compared with 67.310 (see Table 1) for the

version used in [10].

Although small, these differences imply that the UNEDF0 parametrization no

longer satisfies the optimality conditions when computed with the new version of

HFBTHO. It is, therefore, natural to ask whether additional optimization using this

code version results in substantial changes. In fact, this points to the general problem

of the sensitivity of optimization results on starting points: if one begins additional

optimization starting from UNEDF0, or SLy4, or any other starting point, will the

resulting parameterization substantially differ from UNEDF0?

In Table 4, we report the results of the optimization obtained from two very different

starting points, the SLy4 parametrization of [25] used in our original UNEDF0 paper,

and a starting point strongly inspired by the SkM* parametrization of [27]. Since the

binding energy per nucleon of SkM* is out of our bounds, we fixed it arbitrarily at -16

MeV; similarly, SkM* does not come with any prescription for pairing strengths, which

we fixed at -280 MeV for both protons and neutrons. Table 4 shows that in both cases—

and despite SLy4 and SkM* being very different from UNEDF0 and from one another—

similar solutions are found. In fact, as the scaled difference column ((x̂final
i −x̂UNEDF0

i )/σi)

shows, the two solutions are both well within a single standard deviation of UNEDF0

(based on the uncertainties σ reported in Table 1).
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3.2. UNEDF1, revisited

We now consider the effect of changing the data d employed in the NLS optimization

of UNEDF1. We begin by motivating an estimate of the effect of this change on the

optimal parameter values x̂.

Formally, let x̂ ∈ R
nx minimize f 0(x) = ‖F(x)‖22 as in (4). Now suppose that

the residual F(x) ∈ R
nd undergoes a change by ǫ ∈ R

nd, for example, because each

normalized datum di
wi

is changed to di
wi

+ ǫi. A second-order Taylor expansion of

f(x) = ‖F(x) + ǫ‖22 about x̂ is

f(x) ≈ f(x̂) + 2ǫT Ĵ(x− x̂)

+
1

2
(x− x̂)T

(

∇2f 0(x̂) + 2

nd
∑

i=1

ǫi∇
2Fi(x̂)

)

(x− x̂),

where Ĵ denotes the Jacobian matrix [∂Fi(x̂)
∂xj

]i,j and we have used the first-order

optimality condition ∇f 0(x̂) = 2ĴTF(x̂) = 0. When ǫ is small, this quadratic will

be convex and hence minimized at

xǫ − x̂ = 2

(

∇2f 0(x̂) + 2

nd
∑

i=1

ǫi∇
2Fi(x̂)

)−1

ĴT
ǫ

= 2
(

∇2f 0(x̂)
)−1

ĴT
ǫ+O(‖ǫ‖2).

When F(x̂) is small, the Hessian ∇2f 0(x̂) is well-approximated by 2ĴT Ĵ , which yields

the approximation

x̃ǫ = x̂+
(

ĴT Ĵ
)−1

ĴT
ǫ (7)

of the new optimal solution for f = ‖F(x) + ǫ‖22.

We apply this estimate to the UNEDF1 problem when additional nuclear mass data

is added for the 17 new neutron-rich, even-even nuclei measured in [28]. We refer to

this new data as the Argonne masses (AM); further details of the new observables can

be found in [29, Supplementary material].

With the data vector d now containing nd = 132 components, we estimate the

effect of including the new observables by considering the vector ǫ ∈ R
nd consisting of

zeros, except in the 17 components corresponding to the new observables. For these new

observables, we take ǫi = Fi(x̂), where x̂ is the UNEDF1 parameterization. For each of

the 10 inactive parameters of UNEDF1, Figure 3 illustrates the interval corresponding to

the UNEDF1 parameter value and a half standard deviation (±σi

4
, where σ is reported

in Table 3). The figure shows that the estimator (7) predicts the new optimal values to

differ from UNEDF1 in only minor ways, each new value being within σi

2
of UNEDF1.

Also shown are the actual optimal values as found by POUNDERS when the new data is

included in an optimization begun from UNEDF1 (see Table 5). These actual values are

also within σi

2
of UNEDF1, with the predictions in (7) generally indicating the correct

direction of the change (with the exception of Cρ∇J
1 ).
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Figure 3. (Half standard deviation) Intervals for the inactive parameters in UNEDF1

[11], the optimal parameters when the AM data is included as predicted by (7), and

the actual optimal parameters found by POUNDERS run from UNEDF1.

Table 5 summarizes the solutions found by POUNDERS from two different starting

points. Again, the solutions found are remarkably close to one another, each parameter

being with 0.07 of a standard deviation based (on the UNEDF1 uncertainties σ reported

in Table 3). Furthermore, as predicted by the parameters remaining close relative to

their uncertainties (Figure 3), the χ2 values based on UNEDF1 ( f(x̂)
nd−nx

= 51.058
103

= 0.496;

see Table 3) and the parameterization obtained with the AM data ( f(x̂)
nd−nx

= 54.01
120

=

0.450; see Table 5) are similar.

The final columns in Table 5 return to the topic of removing the bounds on the

nuclear matter property parameters (recall the UNEDF0 case in Table 1). Here we

see that χ2 can be further reduced ( f(x̂)
nd−nx

= 0.386) if ENM/A and KNM are allowed

to violate the bounds, but that the changes to the parameters are substantial (up to

5 standard deviations for aNM
sym alone), even when starting from the bound-constrained

solution “AM Run 2.” In future work we plan to examine the effect of these bounds

and the inclusion of observables that better constrain the nuclear matter properties.

4. Derivatives, Revisited

The tables in Sections 2 and 3 compare differences in the initial and final values obtained

after an optimization. Although the computational budget used is indicated through

the reported number of function evaluations (nf), these tables do not provide a sense of

the rate of progress made the reported algorithms. Were the majority of the evaluations

devoted to certifying approximate optimality? Or, were substantial reductions of the

objective obtained right up until the final evaluations?

Figure 4 illustrates the rate of convergence on a nx = 17-parameter problem

involving the calibration of an occupation number-based energy functional from [20].
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Table 5. Reruns of the UNEDF1 optimization with the inclusion of 17 new AM data

(nx = 12, nd = 132, nN = 96). The scaled difference columns are scaled by the

uncertainties σi in Table 3, the first column being the difference between AM runs 1

and 2, the second column being the difference between AM run 2 and the run without

bound constraints enforced.

AM Run 1 AM Run 2 Scaled Diff. No Bounds Scaled Diff.

start UNEDF0 UNEDF1 AM Run 2

ρc 0.15889255 0.15886155 0.07381 0.15748674 3.273

ENM/A -15.8 -15.8 - -15.692799 -

KNM 220 220.02317 - 221.06558 -

aNM
sym 29.344856 29.336203 0.01433 26.173927 5.236

LNM
sym 40.714438 40.014867 0.05326 13.510725 2.018

1/M∗
s 0.96859386 0.9678555 0.00600 0.91930059 0.3948

Cρ∆ρ
0 -43.980091 -44.028902 0.00910 -39.479616 -0.8395

Cρ∆ρ
1 -114.29145 -111.31777 -0.05700 -150.49163 0.7509

V n
0 -182.23717 -182.15551 -0.00441 -174.88812 -0.3925

V p
0 -203.98073 -204.19083 0.01610 -199.51881 -0.3580

Cρ∇J
0 -72.417226 -72.668136 0.04970 -71.753276 -0.1812

Cρ∇J
1 -32.920571 -31.360678 -0.06739 -31.708413 0.0150

f(x̂) 54.0468 54.0140 46.3344

nf 76 152 74

The different methods in this figure illustrate the benefits—in terms of convergence

speed—of exploiting structural knowledge about the optimization objective. All three

methods are based on the same model-based trust-region framework of POUNDERS; see

[17]. The POUNDER variant assumes that the optimization algorithm does not have

access to the residual vector and thus operates only with f values; POUNDERS uses

the same formulation as in the previous sections, whereby an entire residual vector F

(in this case, consisting of binding energies for nN = nd = 2049 nuclei) is passed to the

optimization algorithm; and the POUNDERSM variant exploits the fact that the (first-

and second-order) derivatives of each residual component are available with respect to

3 of the 17 parameters.

Figure 4 can be placed into broader context by recalling Figure 2. As more residual

derivatives are available, there is a tendency to approach the derivative-based case

(where the NLS structure is exploited). In the other extreme, when only f is available,

the performance of the POUNDER variant is generally expected to be slightly better

than the Nelder-Mead code (see, e.g., [30]).

5. Using POUNDERS

The POUNDERS algorithm can be a powerful tool for scientists to evaluate and improve

computationally expensive theoretical models so they have better agreement with

experimental data. We now outline some of the typical requirements and usage of

POUNDERS for solving applications involving NLS problems.
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Figure 4. Best f value found as a function of the number of f evaluations for different

model-based algorithms on a 17-dimensional parameter estimation problem from [20].

The POUNDERS algorithm is included in the distribution of PETSc/TAO, an open-

source software package developed at Argonne National Laboratory and available free

of charge at [31]. The software library can be built on most common architectures and

operating systems, using almost any modern C compiler.

In order to use the POUNDERS algorithm, an objective function routine must be

written (in C/C++ or Fortran/Fortran90) that can separately compute each component,

Fi(x), of F(x) given a vector of parameters x. POUNDERS is a derivative-free method,

so no gradient information needs to be computed. In order to start the algorithm, an

initial set of parameters x0 and an initial step length must also be provided.

There are a number of features that can be used to improve the performance

and utility of POUNDERS. One of these is the aforementioned enforcement of bound

constraints. Finite bounds can be provided for a subset (or all) of the parameters;

these bounds can be one-sided, with only one of the lower or upper bound values being

finite. We note that POUNDERS assumes that these bound constraints are unrelaxable,

meaning that the algorithm will never attempt to evaluate the residual vector outside

of the bounds. The benefit of this restriction is that one can ensure that the underlying

simulation is not run in regions of parameter space where it may be error-prone or

where its output may not be defined. A limitation of this restriction is that, provided

the residual vector is well-behaved outside of these bounds, in some cases a derivative-

free algorithm requires fewer evaluations when these bounds can be relaxed.

Whether finite bounds are provided or not, scaling of the variables is an important

consideration when calling POUNDERS. By default, POUNDERS fundamentally assumes

that the objective f experiences similar changes under a unit change to each of the

parameters. Consequently, we recommend that the user apply an affine transformation

to the parameters in the function that POUNDERS calls. For example, Table 2 lists

the scaling bounds used throughout the HFBTHO-based optimizations reported in this
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paper. In the layer between HFBTHO and POUNDERS, we apply a transformation T

that maps the scaling rectangle in Table 2 to the unit hypercube, T ([sl, su]) = [0, 1]nx;

the bound constraints being scaled by the same transformation.

Other features include the ability to initialize the internal model of the application

using precomputed parameter sets and their objectives (warm-starting) to improve

performance. There are also a number of features common to all PETSc/TAO programs

provided by the PETSc framework; these include robust error handling, portability,

command-line argument parsing, and performance profiling [32].

More detailed instructions for using POUNDERS are available from [31] or [33], as

well as example programs, implementation details, and contact information.
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